首页> 外文会议>International Conference on Intelligent Transportation Systems >Fusion Scheme for Semantic and Instance-level Segmentation
【24h】

Fusion Scheme for Semantic and Instance-level Segmentation

机译:语义和实例级分割的融合方案

获取原文

摘要

A powerful scene understanding can be achieved by combining the tasks of semantic segmentation and instance level recognition. Considering that these tasks are complementary, we propose a multi-objective fusion scheme which leverages the capabilities of each task: pixel level semantic segmentation performs well in background classification and delimiting foreground objects from background, while instance level segmentation excels in recognizing and classifying objects as a whole. We use a fully convolutional residual network together with a feature pyramid network in order to achieve both semantic segmentation and Mask R-CNN based instance level recognition. We introduce a novel heuristic fusion approach for panoptic segmentation. The instance and semantic segmentation output of the network is fused into a panoptic segmentation. This is achieved using object sub-category class and instance propagation guidance by object category class from semantic segmentation. The proposed solution achieves significant improvements in semantic object segmentation and object mask boundaries refinement at low computational costs.
机译:通过组合语义分割和实例级别识别的任务,可以实现强大的场景理解。考虑到这些任务是互补的,我们提出了一种多目标融合方案,该方案利用了每个任务的功能:像素级语义分割在背景分类和从背景中区分前景对象方面表现良好,而实例级分割则在将对象识别和分类方面表现出色整个。我们将全卷积残差网络与特征金字塔网络一起使用,以实现语义分割和基于Mask R-CNN的实例级别识别。我们介绍了一种新颖的启发式融合方法来进行全景分割。网络的实例和语义分割输出融合为全景分割。这是通过使用对象子类别类和对象类别类通过语义分割的实例传播指导来实现的。所提出的解决方案以低的计算成本实现了语义对象分割和对象掩码边界细化方面的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号