首页> 外文会议>International Conference on Intelligent Transportation Systems >The TUBS Road User Dataset: A New LiDAR Dataset and its Application to CNN-based Road User Classification for Automated Vehicles
【24h】

The TUBS Road User Dataset: A New LiDAR Dataset and its Application to CNN-based Road User Classification for Automated Vehicles

机译:TUBS道路用户数据集:新的LiDAR数据集及其在基于CNN的自动驾驶汽车道路用户分类中的应用

获取原文

摘要

We present a novel approach for classifying pre-segmented laser scans of road users with consideration of real-time capability for applications in automated vehicles. Our classification approach uses 2.5D Convolutional Neural Networks (CNNs) to process range data as well as intensity information retrieved from reflected beams. We do not solely rely on publicly available laser scan datasets, which lack several features, but we provide an additional dataset from real-world sensor recordings, annotated by a tracking-based automatic labeling process. We evaluate the classification performance of our CNN regarding different feature configurations. For training, we use automatically and manually labeled data as well as mixtures with other public datasets. The results show promising classification capabilities. Training with automated labels shows similar results, providing a possibility to avoid the need for manual editing expense.
机译:我们提出一种新颖的方法来分类道路使用者的预分段激光扫描,同时考虑到在自动车辆中的实时功能。我们的分类方法使用2.5D卷积神经网络(CNN)处理距离数据以及从反射光束中获取的强度信息。我们不仅仅依赖缺乏某些功能的可公开获得的激光扫描数据集,还提供了来自真实世界传感器记录的附加数据集,并通过基于跟踪的自动标记过程进行了注释。我们针对不同功能配置评估CNN的分类性能。为了进行培训,我们使用自动和手动标记的数据以及与其他公共数据集的混合。结果表明有希望的分类能力。使用自动标签进行培训会显示相似的结果,从而可以避免手动编辑费用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号