首页> 外文会议>International Conference on Intelligent Transportation Systems >Semantic Classification of Road Markings from Geometric Primitives
【24h】

Semantic Classification of Road Markings from Geometric Primitives

机译:基于几何图元的道路标记语义分类

获取原文

摘要

The classification of semantically meaningful road markings in images is an important and safety critical task for autonomous and semi-autonomous vehicles. However, beyond simple lane markings, real-time detection and interpretation of road markings is challenging as images are subject to occlusions, partial observations, lighting changes and differing weather conditions. Additionally, there is high variation in the road markings between countries and regions, which makes interpretation difficult. In this work we present a three-fold approach to the semantic classification. Firstly, we employ a weakly supervised neural network to detect pixels belonging to road markings under different conditions. Subsequently, these pixels are classified into geometric primitives, from which we retrieve the semantic classes through a fast and parallel model-fitting algorithm that offers real-time performance. Unlike other methods in the literature that perform road marking classification independently, our proposed approach performs a joint classification leveraging the highly structured configurations that characterise urban traffic scenes. Consequently, we retrieve the underlying semantic classes under a variety of weather and lighting conditions as we demonstrate in our results.
机译:对于自动和半自动车辆,图像中语义上有意义的道路标记的分类是一项重要且安全关键的任务。但是,除了简单的车道标记外,实时检测和判读道路标记也具有挑战性,因为图像会受到遮挡,局部观察,照明变化和不同天气状况的影响。另外,国家和地区之间的道路标记差异很大,这使解释变得困难。在这项工作中,我们提出了一种语义分类的三重方法。首先,我们采用弱监督神经网络来检测不同条件下属于道路标记的像素。随后,将这些像素分类为几何图元,然后通过提供实时性能的快速并行模型拟合算法从中检索语义类。与文献中独立进行道路标记分类的其他方法不同,我们提出的方法利用表征城市交通场景的高度结构化配置进行联合分类。因此,如我们的结果所示,我们在各种天气和光照条件下检索了基础语义类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号