首页> 外文会议>International Conference on Intelligent System Design and Engineering Applications;ISDEA 2013 >Knowledge Granulation Based Roughness Measure for Neighborhood Rough Sets
【24h】

Knowledge Granulation Based Roughness Measure for Neighborhood Rough Sets

机译:基于知识粒度的邻域粗糙集粗糙度度量

获取原文

摘要

Neighborhood rough sets have been applied to feature selection and attribute reduction successfully. Roughness is an important uncertainty measure for a concept in an information system. In this paper, generalized from the classical roughness, a new uncertainty measure based on granulation of knowledge for neighborhood rough sets is proposed to overcome the limitations, and then present its properties. Theoretical studies and examples show that the new uncertainty measure is more precise than existing ones.
机译:邻域粗糙集已成功应用于特征选择和属性约简。粗糙度是信息系统中一个概念的重要不确定性度量。本文从经典粗糙度的角度出发,提出了一种基于知识粒化的邻域粗糙集不确定性度量方法,以克服其局限性,并给出其性质。理论研究和实例表明,新的不确定性度量比现有度量更加精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号