首页> 外文会议>International Conference on Intelligent Computing and Communication for Smart World >Rule Based Fuzzy Image Segmentation for the Detection of Breast Cancer from Ultrasound Image
【24h】

Rule Based Fuzzy Image Segmentation for the Detection of Breast Cancer from Ultrasound Image

机译:基于规则的模糊图像分割从超声图像中检测乳腺癌

获取原文

摘要

Early detection of breast cancer is the most important to reduce the number of deaths among women. Computer aided diagnosis plays a vital role in all clinical diagnosis and hence used in the proposed work for detection of breast cancer. To reduce the speckle noise in ultrasound image Median filter, Non Local Means filter and Lee filter was applied for preprocessing. The non-Local means filter had been used as it provides the highest PSNR values. Fuzzy clustering method is applied for the segmentation of the denoised image. After segmenting the image into set of clusters fuzzy level set algorithm is applied for more accurate detection of edges in the tumour region. PSNR value of 35.86dB had been obtained after denoising using Non Local mean filter. The mean, entropy and standard deviation parameters are analyzed for the different cluster size of the benign and malignant image. From the results it had been observed that the cluster size 4 provides better segmentation as it provides almost constant parameters for different images. From the cluster that belongs to the region of interest, fuzzy level set algorithm had been applied for minute edge detection. The segmented image after applying fuzzy level set provides better perception compared to the image without level set. After the segmentation, in the feature extraction, important features such as edge, intensity, contrast and orientation are extracted using Feature-based morphometry approach (FBM). Specifically to extract orientation, the images are scaled at 0o, 45 o, 90 o and 135 o using Gabour filter. The features such as mean, standard deviation and entropy are calculated for all the seven features and the results are compared for more number of benign and malignant images. These extracted features are used for the classification stage. In the classification, 50 ultrasound breast cancer images consist of 14 benign images and 36 malignant images are used. The images are trained by Support Vector Machine using the Generalized Multiple Kernel Learning with the help of regularization 0 and 1. From this training, the maximum accuracy, sensitivity, specificity and BAC obtained as 73, 100, 38 and 69 respectively with regularization 1.
机译:早期发现乳腺癌对于减少女性死亡人数是最重要的。计算机辅助诊断在所有临床诊断中都起着至关重要的作用,因此被用于提议的检测乳腺癌的工作中。为了减少超声图像中的斑点噪声,对中值滤波器,非局部均值滤波器和Lee滤波器进行了预处理。已使用非本地均值滤波器,因为它提供了最高的PSNR值。模糊聚类方法应用于去噪图像的分割。在将图像分割成簇集之后,应用模糊水平集算法来更精确地检测肿瘤区域中的边缘。使用非局部均值滤波器进行去噪后,PSNR值为35.86dB。针对良性和恶性图像的不同簇大小,分析了均值,熵和标准差参数。从结果可以看出,簇大小4提供了更好的分割,因为它为不同图像提供了几乎恒定的参数。从属于感兴趣区域的群集中,模糊水平集算法已应用于微小边缘检测。与没有水平集的图像相比,应用模糊水平集后的分割图像可提供更好的感知。分割后,在特征提取中,使用基于特征的形态计量学方法(FBM)提取重要特征,例如边缘,强度,对比度和方向。特别是为了提取方向,使用Gabour滤镜将图像缩放为0o,45o,90o和135o。计算所有七个特征的特征(例如均值,标准差和熵),然后比较结果以获取更多数目的良性和恶性图像。这些提取的特征用于分类阶段。在分类中,使用了50张超声乳腺癌图像,其中包括14张良性图像,使用了36张恶性图像。通过支持向量机使用广义多核学习在正则化0和1的帮助下对图像进行训练。通过这种训练,在正则化为1的情况下,获得的最大准确度,灵敏度,特异性和BAC分别为73、100、38和69。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号