首页> 外文会议>International Conference on Informatics, Electronics Vision >Ensemble approach for improving generalization ability of neural networks
【24h】

Ensemble approach for improving generalization ability of neural networks

机译:集成方法以提高神经网络的泛化能力

获取原文

摘要

This paper presents a study on improving generalization ability of neural networks (NNs) by using ensemble approach. In already existing literature, both theoretical and experimental studies have revealed that the performance, i.e., generalization ability of NN ensemble is greatly dependent on both accuracy and diversity among individual NNs in the ensemble. In this study and implementation of NN ensemble, Back Propagation (BP) learning algorithm is used to train individual NNs independently for a fixed number of training epoches. We have considered 12 different benchmark problems in our study. Few papers have considered such a large number of problems. The experimental results show that the performance of NN ensemble is often better than individual NNs, and both accuracy and diversity among participating networks are important for the generalization ability of the ensemble.
机译:本文提出了一种通过集成方法来提高神经网络的泛化能力的研究。在已经存在的文献中,理论和实验研究都表明,NN合奏的性能,即泛化能力在很大程度上取决于合奏中单个NN之间的准确性和多样性。在本研究和NN集成的实现中,使用反向传播(BP)学习算法来为固定数量的训练史独立地训练单个NN。我们在研究中考虑了12个不同的基准问题。很少有论文考虑过如此众多的问题。实验结果表明,神经网络集成的性能通常要优于单个神经网络,而参与网络之间的准确性和多样性对于集成的泛化能力至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号