首页> 外文会议>International Conference on Information Reuse and Integration for Data Science >Texture Image Categorization in Wavelet Domain via Naive Bayes Classifier Based on Laplace and Generalized Gaussian Distribution
【24h】

Texture Image Categorization in Wavelet Domain via Naive Bayes Classifier Based on Laplace and Generalized Gaussian Distribution

机译:基于拉普拉斯和广义高斯分布的朴素贝叶斯分类器在小波域的纹理图像分类

获取原文

摘要

In this paper, we have investigated recently proposed feature extraction technique for texture image representation. In the introduced method, features are extracted via bounded Laplace mixture model (BLMM) in wavelet domain. Due to nature of wavelet coefficients that can be modeled accurately with Laplace distribution, it is proposed to apply classifiers based on this distribution, which leads us to introduce Naive Bayes classifier with Laplace distribution for image categorization. The proposed approach is validated through experiments on different texture image datasets and it has shown very good results as compared to the model based on Gaussian distribution. The generalized Gaussian distribution is a generalization of both Laplace and Gaussian distributions, thus we have introduced also Naive Bayes classifier with generalized Gaussian distribution to achieve better performance as compared to the above two models. The proposed approach is also validated through extensive experiments and it is observed that by taking into account the nature of data, proposed models have very good performance. Classification results are presented by different performance metrics to ensure the effectiveness of proposed algorithms in texture image classification.
机译:在本文中,我们研究了最近提出的用于纹理图像表示的特征提取技术。在引入的方法中,通过小波域中的有界Laplace混合模型(BLMM)提取特征。由于可以用拉普拉斯分布精确建模的小波系数的性质,提出了基于该分布的分类器,这导致我们引入具有拉普拉斯分布的朴素贝叶斯分类器进行图像分类。通过对不同纹理图像数据集的实验验证了该方法的有效性,与基于高斯分布的模型相比,该方法显示出了很好的效果。广义高斯分布是拉普拉斯分布和高斯分布的广义,因此我们还引入了具有广义高斯分布的朴素贝叶斯分类器,与上述两个模型相比,可以获得更好的性能。通过大量实验也验证了所提出的方法,并观察到,考虑到数据的性质,所提出的模型具有非常好的性能。分类结果由不同的性能指标表示,以确保所提出算法在纹理图像分类中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号