首页> 外文会议>International conference on information knowledge engineering;IKE'09 >From Question Context to Answer Credibility: Modeling Semantic Structures for Question Answering Using Statistical Methods
【24h】

From Question Context to Answer Credibility: Modeling Semantic Structures for Question Answering Using Statistical Methods

机译:从问题上下文到答案可信度:使用统计方法为提问的语义结构建模

获取原文

摘要

Within a Question Answering (QA) framework, Question Context plays a vital role. We define a Question Context to be background knowledge that can be used to represent the user's information need more completely than the terms in the query alone. The Aspect-Based Relevance Language Model is an approach that uses statistical language modeling techniques to model a semantic Question Context. This paper proposes a novel measure called Answer Credibility, which we derive from this semantic Question Context using a metric called Perspective Similarity. Our approach is significant because it allows us to extend the usage of statistical language modeling techniques, which have been successfully applied to the first stage (the IR stage) of QA, into the second stage. Because we use the document corpus itself as a knowledge source, our techniques do not require external resources such as ontologies or thesauri. Answer Credibility is incorporated into the QA process in the Answer Selection phase; we interpolate the final QA answer score using Answer Credibility. Our results are promising and show significant improvements in Mean Reciprocal Rank (MRR) and accuracy for 'who, ' 'what,' and 'where ' type questions over the baseline approach.
机译:在问答(QA)框架中,问题上下文扮演着至关重要的角色。我们将问题上下文定义为背景知识,它可以用来表示用户的信息需求,而不仅仅是查询中的术语。基于方面的相关语言模型是一种使用统计语言建模技术为语义问题上下文建模的方法。本文提出了一种称为“答案可信度”的新措施,我们使用一个称为“透视相似度”的度量从该语义问题上下文中得出该度量。我们的方法意义重大,因为它使我们能够将已经成功应用于质量检查第一阶段(IR阶段)的统计语言建模技术的使用扩展到第二阶段。因为我们将文档语料库本身用作知识源,所以我们的技术不需要外部资源,例如本体论或叙词表。在“答案选择”阶段,“答案可信度”已纳入质量​​检查流程;我们使用“答案可信度”对最终的质量检查答案得分进行插值。我们的结果是有希望的,并且显示出在基线方法上“谁”,“什么”和“哪里”类型的问题的平均倒数排名(MRR)和准确性的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号