首页> 外文会议>International Conference on High Performance Computing, Data, and Analytics >Worksharing Tasks: An Efficient Way to Exploit Irregular and Fine-Grained Loop Parallelism
【24h】

Worksharing Tasks: An Efficient Way to Exploit Irregular and Fine-Grained Loop Parallelism

机译:工作共享任务:利用不规则和细粒度循环并行性的有效方法

获取原文

摘要

Shared memory programming models usually provide worksharing and task constructs. The former relies on the efficient fork-join execution model to exploit structured parallelism; while the latter relies on fine-grained synchronization among tasks and a flexible data-flow execution model to exploit dynamic, irregular, and nested parallelism. On applications that show both structured and unstructured parallelism, both worksharing and task constructs can be combined. However, it is difficult to mix both execution models without penalizing the data-flow execution model. Hence, on many applications structured parallelism is also exploited using tasks to leverage the full benefits of a pure data-flow execution model. However, task creation and management might introduce a non-negligible overhead that prevents the efficient exploitation of fine-grained structured parallelism, especially on many-core processors. In this work, we propose worksharing tasks. These are tasks that internally leverage worksharing techniques to exploit fine-grained structured loop-based parallelism. The evaluation shows promising results on several benchmarks and platforms.
机译:共享内存编程模型通常提供工作共享和任务构造。前者依靠有效的fork-join执行模型来利用结构化并行性。而后者则依靠任务之间的细粒度同步和灵活的数据流执行模型来利用动态,不规则和嵌套的并行性。在同时显示结构化和非结构化并行性的应用程序上,可以将工作共享和任务构造结合在一起。但是,在不惩罚数据流执行模型的情况下很难混合两种执行模型。因此,在许多应用程序上,还通过使用任务来利用结构化并行性来利用纯数据流执行模型的全部优势。但是,任务创建和管理可能会引入不可忽略的开销,这会阻止有效利用细粒度的结构化并行机制,尤其是在多核处理器上。在这项工作中,我们提出了工作共享任务。这些是在内部利用工作共享技术来利用细粒度的基于结构的循环并行性的任务。该评估在多个基准和平台上显示出令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号