首页> 外文会议>International conference on high performance computing and applications >Parameter Identification Inverse Problems of Partial Differential Equations Based on the Improved Gene Expression Programming
【24h】

Parameter Identification Inverse Problems of Partial Differential Equations Based on the Improved Gene Expression Programming

机译:基于改进基因表达程序的偏微分方程参数辨识逆问题

获取原文

摘要

Traditionally, solving the parameter identification inverse problems of partial differential equations encountered many difficulties and insufficiency. In this paper, we propose an improved GEP (Gene Expression Programming) to identify the parameters in the reverse problems of partial differential equations based on the self-adaption, self-organization and self-learning characters of GEP. This algorithm simulates a parametric function itself of a partial differential equation directly through the observed values by fully taking into account inverse results caused by noises of a measured value. Modeling is unnecessary to add regularization in the modeling process aiming at special problems again. The experiment results show that the algorithm has good noise-immunity. In case there is no noise or noise is very low, the identified parametric function is almost the same as the original accurate value; when noise is very high, good results can still be obtained, which successfully realizes automation of the parameter modeling process for partial differential equations.
机译:传统上,解决偏微分方程的参数辨识逆问题遇到许多困难和不足。在本文中,我们提出了一种改进的GEP(基因表达式编程),以基于GEP的自适应,自组织和自学习特性来识别偏微分方程逆问题中的参数。该算法通过充分考虑由测量值的噪声引起的逆结果,直接通过观测值来模拟偏微分方程的参数函数本身。再次针对特殊问题,在建模过程中无需添加正则化即可进行建模。实验结果表明,该算法具有良好的抗噪能力。如果没有噪声或噪声非常低,则识别出的参数函数几乎与原始准确值相同;当噪声很高时,仍然可以获得良好的结果,成功实现了偏微分方程参数建模过程的自动化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号