首页> 外文会议>International Conference on High Performance Computing Simulation >Compression of Wearable Body Sensor Network Data Using Improved Two-Threshold-Two-Divisor Data Chunking Algorithms
【24h】

Compression of Wearable Body Sensor Network Data Using Improved Two-Threshold-Two-Divisor Data Chunking Algorithms

机译:使用改进的二阈值二因子数据分块算法压缩可穿戴人体传感器网络数据

获取原文

摘要

Data compression plays a significant role in Body Sensor Networks (BSN). This is true since the sensors in BSNs have limited battery power and memory; sensor data needs to be transmitted regularly, and in lossless manner to provide prompt, accurate feedback. The paper evaluates lossless data compression algorithms including Run Length Encoding (RLE), Lempel Zev Welch (LZW), and Huffman on data from wearable devices and compares them in terms of Compression Ratio, Compression Factor, Savings Percentage and Compression Time. It also evaluates a data deduplication technique used for Low Bandwidth File Systems (LBFS), Two Thresholds Two Divisors (TTTD) algorithm, to determine if it is suitable for BSN data. First, through experiments s we arrive at a set of parameter values that give compression ratio above 50 on BSN data. Next, based on performance evaluation results of TTTD and classical compression algorithms including RLW, LAW, and Huffman, it proposes a technique to combine multiple algorithms in sequence. Upon comparison of the performance, it is found that the new algorithm, TTTD-H, which executes TTTD and Huffman in sequence, significantly improves the compression factor against both TTTD and Huffman. Performance evaluation has been carried out in two sets of BSN data.
机译:数据压缩在人体传感器网络(BSN)中起着重要作用。这是事实,因为BSN中的传感器的电池电量和内存有限。传感器数据需要定期且以无损方式传输,以提供及时,准确的反馈。本文对可穿戴设备的数据评估了无损数据压缩算法,包括运行长度编码(RLE),Lempel Zev Welch(LZW)和霍夫曼,并从压缩率,压缩系数,节省百分比和压缩时间方面对它们进行了比较。它还评估了用于低带宽文件系统(LBFS),两个阈值两个因子(TTTD)算法的重复数据删除技术,以确定它是否适合BSN数据。首先,通过实验我们得出了一组参数值,这些参数值使BSN数据的压缩率高于50。接下来,根据TTTD的性能评估结果以及包括RLW,LAW和Huffman在内的经典压缩算法,提出了一种将多个算法依次组合的技术。通过性能比较发现,按顺序执行TTTD和Huffman的新算法TTTD-H大大提高了针对TTTD和Huffman的压缩系数。在两组BSN数据中进行了性能评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号