首页> 外文会议>International Conference on High Performance Computing >Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
【24h】

Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations

机译:用于HEP仿真的HPC系统上的生成对抗网络的数据并行培训

获取原文

摘要

In the field of High Energy Physics (HEP), simulating the interaction of particle detector materials is a compute-intensive task, that currently uses 50% of the computing resources globally available as part of the Worldwide LCH Computing Grid (WLCG). Since some level of approximation is acceptable, it is possible to implement fast simulation simplified models that have the advantage of being less computationally intensive. In this work, we present a fast simulation approach based on Generative Adversarial Networks (GANs). The model consists of a conditional generative network that describes the detector response and a discriminative network; both networks are trained in adversarial manner. The adversarial training process is computationally intensive and the application of a distributed approach is not straightforward. We rely on the MPI-based Cray Machine Learning Plugin to efficiently train the GAN over multiple nodes and GPGPUs. We report preliminary results on the accuracy of the generated samples and on the scaling of the time to solution. We demonstrate how HPC systems could be utilized to optimize this kind of models, on account of their large computational power and highly efficient interconnect.
机译:在高能物理(HEP)领域,模拟粒子检测器材料的相互作用是一项计算密集型任务,当前使用全球LCH计算网格(WLCG)一部分的全球可用计算资源的50%。由于某种程度的逼近是可以接受的,因此可以实现简化的快速仿真模型,其优点是计算量少。在这项工作中,我们提出了一种基于生成对抗网络(GAN)的快速仿真方法。该模型由描述探测器响应的条件生成网络和判别网络组成。两个网络都以对抗性方式进行训练。对抗训练过程是计算密集型的,并且分布式方法的应用并不简单。我们依靠基于MPI的Cray机器学习插件来有效地在多个节点和GPGPU上训练GAN。我们报告有关生成的样本的准确性和解决时间的比例的初步结果。我们展示了高性能计算系统由于其强大的计算能力和高效的互连性而可用于优化此类模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号