【24h】

Constructing Inductive-Inductive Types in Cubical Type Theory

机译:在立体类型理论中构造归纳-归纳类型

获取原文

摘要

Inductive-inductive types are a joint generalization of mutual inductive types and indexed inductive types. In extensional type theory, inductive-inductive types can be constructed from inductive types, and this construction has been conjectured to work in intensional type theory as well. In this paper, we show that the existing construction requires Uniqueness of Identity Proofs, and present a new construction (which we conjecture generalizes) of one particular inductive-inductive type in cubical type theory, which is compatible with homotopy type theory.
机译:归纳-归纳类型是互归式和索引归纳类型的联合概括。在扩展类型理论中,可以从归纳类型构造归纳-归纳类型,并且这种结构也被认为也可以在归纳类型理论中起作用。在本文中,我们证明了现有的构造需要身份证明的唯一性,并提出了一种新的构造(我们猜想是一般的),它是立方型理论中一种特定的感应-感应型,与同伦型理论兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号