首页> 外文会议>International Conference on Electrical Sciences and Technologies in Maghreb >A Deep Learning Based on Sparse Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis
【24h】

A Deep Learning Based on Sparse Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis

机译:基于稀疏自动编码器的MCSA深度学习在转子断条故障检测与诊断中的应用

获取原文

摘要

The understanding of the Broken Rotor Bar (BRB) features frequencies and amplitudes has a great importance for all diagnostic methods. These characteristics frequencies shows a drawbacks under varying load condition. The discrete Fourier transform (DFT) has been widely used to achieve these requirements, because of its efficiency. However, this paper present an enhancing of the fault detection based on a Machine Current Signature Analysis (MCSA) method. Indeed, the use of Sparse Autoencoder (AE) with the combination of Multi-Layer Perceptron (MLP) shown a good accuracy. Furthermore, the extraction of the new features to use in multi-class classification for the healthy and faulty Induction Motor (IM) is presented.
机译:对于所有诊断方法,了解转子条损坏(BRB)的频率和振幅特性都非常重要。这些特性频率​​在变化的负载条件下显示出缺点。由于其效率,离散傅里叶变换(DFT)已被广泛用于满足这些要求。但是,本文提出了一种基于机器电流签名分析(MCSA)方法的故障检测增强功能。确实,将稀疏自动编码器(AE)与多层感知器(MLP)结合使用可显示出良好的准确性。此外,还提出了新特征的提取,以用于健康和故障感应电动机(IM)的多类别分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号