首页> 外文会议>International Conference on Data Science and Communication >Sentiment Analysis on Time-Series Data Using Weight Priority Method on Deep Learning
【24h】

Sentiment Analysis on Time-Series Data Using Weight Priority Method on Deep Learning

机译:深度学习中基于权重优先级方法的时间序列数据情感分析

获取原文

摘要

Sentiment Analysis (SA)is the process to gain an overview of the public opinion on certain topics and it is useful in commerce and social media. The preference on certain topics can be varied on different time periods. To analyze the sentiments on topics in different time periods, priority weight based deep learning approaches like Convolutional-Long Short-Term Memory (C-LSTM)and Stacked- Long Short-Term Memory (S-LSTM)is explored and analyzed in this research. The research method focuses on three phases. In the first phase text data (review given by the customers on various products)is collected from social networking e-commerce site and temporal ordering is done. In the second phase, different deep learning models are created and trained with different time-series data. In the final phase the weights are assigned based on temporal aspect of the data collected. For the obtained results verification and validation processes are carried out. Precision and recall measures are computed. Results obtained shows better performance in terms of classification accuracy and F1-score.
机译:情绪分析(SA)是获取公众对某些主题的概述的过程,在商业和社交媒体中非常有用。对某些主题的偏好可以在不同的时间段内变化。为了分析不同时间段内的主题情感,本研究探索并分析了基于优先权重的深度学习方法,例如卷积长期短期记忆(C-LSTM)和堆叠长期短期记忆(S-LSTM) 。研究方法集中在三个阶段。在第一阶段,从社交网络电子商务站点收集文本数据(客户对各种产品的评论),并进行时间排序。在第二阶段,将创建不同的深度学习模型,并使用不同的时间序列数据进行训练。在最后阶段,将基于收集到的数据的时间方面分配权重。对于获得的结果,执行验证和确认过程。计算精确度和召回率。获得的结果显示出更好的分类准确度和F1分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号