首页> 外文会议>International conference on cyber security cryptography and machine learning >Secure Non-interactive User Re-enrollment in Biometrics-Based Identification and Authentication Systems
【24h】

Secure Non-interactive User Re-enrollment in Biometrics-Based Identification and Authentication Systems

机译:基于生物识别和身份验证系统的安全非交互式用户重新注册

获取原文

摘要

Recent years have witnessed an increase in demand for biometrics based identification, authentication and access control (BIA) systems, which offer convenience, ease of use, and (in some cases) improved security. In contrast to other methods, such as passwords or pins, BIA systems face new unique challenges; chiefly among them is ensuring long-term confidentiality of biometric data stored in backends, as such data has to be secured for the lifetime of an individual. Cryptographic approaches such as Fuzzy Extractors (FE) and Fuzzy Vaults (FV) have been developed to address this challenge. FE/FV do not require storing any biometric data in backends, and instead generate and store helper data that enables BIA when a new biometric reading is supplied. Security of FE/FV ensures that an adversary obtaining such helper data cannot (efficiently) learn the biometric. Relying on such cryptographic approaches raises the following question: what happens when helper data is lost or destroyed (e.g., due to a failure, or malicious activity), or when new helper data has to be generated (e.g., in response to a breach or to update the system)? Requiring a large number of users to physically re-enroll is impractical, and the literature falls short of addressing this problem. In this paper we develop SNUSE, a secure computation based approach for non-interactive re-enrollment of a large number of users in BIA systems. We prototype SNUSE to illustrate its feasibility, and evaluate its performance and accuracy on two biometric modalities, fingerprints and iris scans. Our results show that thousands of users can be securely re-enrolled in seconds without affecting the accuracy of the system.
机译:近年来,目睹了对基于生物识别,识别和访问控制(BIA)系统的需求的增加,这些系统提供了便利,易用性以及(在某些情况下)提高了安全性。与其他方法(例如密码或密码)相比,BIA系统面临着新的独特挑战。其中主要是确保对后端存储的生物特征数据的长期机密性,因为此类数据必须在个人生命周期内得到保护。已经开发出诸如模糊提取器(FE)和模糊库(FV)之类的密码方法来应对这一挑战。 FE / FV不需要在后端存储任何生物识别数据,而是在提供新的生物识别读数时生成并存储启用BIA的辅助数据。 FE / FV的安全性确保获取此类帮助者数据的对手无法(有效地)学习生物统计信息。依靠这种加密方法会引发以下问题:当辅助数据丢失或销毁(例如,由于故障或恶意活动导致)或必须生成新的辅助数据(例如,针对违规行为或响应)时,会发生什么情况?更新系统)?要求大量用户进行物理重新注册是不切实际的,并且文献不足以解决这个问题。在本文中,我们开发了SNUSE,这是一种基于安全计算的方法,用于BIA系统中大量用户的非交互式重新注册。我们对SNUSE进行原型制作以说明其可行性,并在两种生物识别方式(指纹和虹膜扫描)上评估其性能和准确性。我们的结果表明,数以千计的用户可以在几秒钟内安全地重新注册,而不会影响系统的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号