首页> 外文会议>International Conference on Content-Based Multimedia Indexing >Bark Identification Using Improved Statistical Radial Binary Patterns
【24h】

Bark Identification Using Improved Statistical Radial Binary Patterns

机译:使用改进的统计径向二进制模式进行树皮识别

获取原文

摘要

In this paper, we explore the texture representation at high scale levels for the application of tree bark identification. We mainly propose an Improved Statistical Radial Binary Pattern (ISRBP) texture descriptor, by introducing a new representation of the scale-space to encode large macrostructures with a low-dimensional representation. The proposed descriptor has advantages of a compact and information-preserving description of large macrostructures, computational simplicity, no preprocessing stage, enhanced texture representativeness and discriminative power. We conducted comprehensive experiments on different bark datasets, and the results show the effectiveness of the new representation of scale-space. In addition, the combination of different statistical radial descriptors provides competitive to high identification rates than state-of-the-art LBP texture descriptors.
机译:在本文中,我们探索了在树皮识别中应用的高层次纹理表示。我们主要提出一种改进的统计径向二进制模式(ISRBP)纹理描述符,方法是引入尺度空间的新表示形式,以低维表示形式对大型宏结构进行编码。所提出的描述符具有以下优点:对大型宏观结构的紧凑且信息保存的描述,计算简单,没有预处理阶段,增强的纹理表示性和判别力。我们对不同的树皮数据集进行了全面的实验,结果表明了尺度空间新表示的有效性。此外,与最新的LBP纹理描述符相比,不同的统计径向描述符的组合提供了更高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号