首页> 外文会议>International Conference on Computing for Sustainable Global Development >Comparative analysis of features based machine learning approaches for phishing detection
【24h】

Comparative analysis of features based machine learning approaches for phishing detection

机译:基于特征的机器学习网络钓鱼检测方法的比较分析

获取原文

摘要

Machine learning based anti-phishing techniques are based on various features extracted from different sources. These features differentiate a phishing website from a legitimate one. Features are taken from various sources like URL, page content, search engine, digital certificate, website traffic, etc, of a website to detect it as a phishing or non-phishing. The websites are declared as phishing sites if the heuristic design of the websites matches with the predefined rules. The accuracy of the anti-phishing solution depends on features set, training data and machine learning algorithm. This paper presents a comprehensive analysis of Phishing attacks, their exploitation, some of the recent machine learning based approaches for phishing detection and their comparative study. It provides a better understanding of the phishing problem, current solution space in machine learning domain, and scope of future research to deal with Phishing attacks efficiently using machine learning based approaches.
机译:基于机器学习的反网络钓鱼技术基于从不同来源提取的各种功能。这些功能将网络钓鱼网站与合法网站区分开来。从网站的URL,页面内容,搜索引擎,数字证书,网站访问量等各种来源获取功能,以将其检测为网络钓鱼或非网络钓鱼。如果网站的启发式设计与预定义规则匹配,则将这些网站声明为钓鱼网站。反网络钓鱼解决方案的准确性取决于功能集,训练数据和机器学习算法。本文对网络钓鱼攻击,攻击的利用,基于网络钓鱼的最新机器学习方法进行了全面的分析及其比较研究。它提供了对网络钓鱼问题,机器学习领域中当前解决方案空间以及未来研究范围的更好理解,以使用基于机器学习的方法有效地应对网络钓鱼攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号