首页> 外文会议>International Conference on Computer Vision >Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds From Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction
【24h】

Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds From Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction

机译:多角度点云-VAE:通过联合自重构和半对半预测从多个角度进行3D点云的无监督特征学习

获取原文

摘要

Unsupervised feature learning for point clouds has been vital for large-scale point cloud understanding. Recent deep learning based methods depend on learning global geometry from self-reconstruction. However, these methods are still suffering from ineffective learning of local geometry, which significantly limits the discriminability of learned features. To resolve this issue, we propose MAP-VAE to enable the learning of global and local geometry by jointly leveraging global and local self-supervision. To enable effective local self-supervision, we introduce multi-angle analysis for point clouds. In a multi-angle scenario, we first split a point cloud into a front half and a back half from each angle, and then, train MAP-VAE to learn to predict a back half sequence from the corresponding front half sequence. MAP-VAE performs this half-to-half prediction using RNN to simultaneously learn each local geometry and the spatial relationship among them. In addition, MAP-VAE also learns global geometry via self-reconstruction, where we employ a variational constraint to facilitate novel shape generation. The outperforming results in four shape analysis tasks show that MAP-VAE can learn more discriminative global or local features than the state-of-the-art methods.
机译:点云的无监督特征学习对于大规模点云理解至关重要。最近基于深度学习的方法依赖于从自我重构中学习全局几何。但是,这些方法仍遭受局部几何的无效学习,这极大地限制了学习特征的可分辨性。为解决此问题,我们提出MAP-VAE,以通过联合利用全局和局部自我监督来启用全局和局部几何的学习。为了实现有效的局部自我监督,我们引入了针对点云的多角度分析。在多角度场景中,我们首先从每个角度将点云分为前半部分和后半部分,然后训练MAP-VAE学习从相应的前半部分序列预测后半部分序列。 MAP-VAE使用RNN进行了一半到一半的预测,以同时学习每个局部几何以及它们之间的空间关系。此外,MAP-VAE还通过自我重构学习整体几何,我们采用变分约束来促进新颖形状的生成。在四个形状分析任务中表现优异的结果表明,与最新技术相比,MAP-VAE可以学习更多判别性的全局或局部特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号