首页> 外文会议>International Conference on Computer Vision >A Learned Representation for Scalable Vector Graphics
【24h】

A Learned Representation for Scalable Vector Graphics

机译:可伸缩矢量图形的学习表示

获取原文

摘要

Dramatic advances in generative models have resulted in near photographic quality for artificially rendered faces, animals and other objects in the natural world. In spite of such advances, a higher level understanding of vision and imagery does not arise from exhaustively modeling an object, but instead identifying higher-level attributes that best summarize the aspects of an object. In this work we attempt to model the drawing process of fonts by building sequential generative models of vector graphics. This model has the benefit of providing a scale-invariant representation for imagery whose latent representation may be systematically manipulated and exploited to perform style propagation. We demonstrate these results on a large dataset of fonts crawled from the web and highlight how such a model captures the statistical dependencies and richness of this dataset. We envision that our model can find use as a tool for graphic designers to facilitate font design.
机译:生成模型的巨大进步已经为自然界中的人工渲染的面孔,动物和其他物体带来了近乎摄影的质量。尽管取得了这些进步,但并不是通过对对象进行详尽的建模来获得对视觉和图像的更高层次的了解,而是可以识别出最能概括对象方面的更高层次的属性。在这项工作中,我们尝试通过建立矢量图形的顺序生成模型来建模字体的绘制过程。该模型的好处是为图像提供了比例尺不变的表示形式,其潜在表示形式可以被系统地操纵和利用来进行样式传播。我们在从网络上爬取的大型字体数据集上演示了这些结果,并重点介绍了这种模型如何捕获该数据集的统计依赖性和丰富性。我们设想,我们的模型可以用作图形设计师促进字体设计的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号