首页> 外文会议>International Conference on Computer Vision >Self-Ensembling With GAN-Based Data Augmentation for Domain Adaptation in Semantic Segmentation
【24h】

Self-Ensembling With GAN-Based Data Augmentation for Domain Adaptation in Semantic Segmentation

机译:基于语义分割的基于GAN数据增强的自组装域自适应

获取原文

摘要

Deep learning-based semantic segmentation methods have an intrinsic limitation that training a model requires a large amount of data with pixel-level annotations. To address this challenging issue, many researchers give attention to unsupervised domain adaptation for semantic segmentation. Unsupervised domain adaptation seeks to adapt the model trained on the source domain to the target domain. In this paper, we introduce a self-ensembling technique, one of the successful methods for domain adaptation in classification. However, applying self-ensembling to semantic segmentation is very difficult because heavily-tuned manual data augmentation used in self-ensembling is not useful to reduce the large domain gap in the semantic segmentation. To overcome this limitation, we propose a novel framework consisting of two components, which are complementary to each other. First, we present a data augmentation method based on Generative Adversarial Networks (GANs), which is computationally efficient and effective to facilitate domain alignment. Given those augmented images, we apply self-ensembling to enhance the performance of the segmentation network on the target domain. The proposed method outperforms state-of-the-art semantic segmentation methods on unsupervised domain adaptation benchmarks.
机译:基于深度学习的语义分割方法有一个固有的局限性,那就是训练模型需要大量带有像素级注释的数据。为了解决这个具有挑战性的问题,许多研究人员将注意力放在语义监督的无监督域自适应上。无监督域适应力图使在源域上训练的模型适应目标域。在本文中,我们介绍了一种自组装技术,这是分类中领域自适应的成功方法之一。但是,将自组装应用于语义分段非常困难,因为在自组装中使用经过大量调整的手动数据扩充对减少语义分段中的大域空白没有用。为了克服此限制,我们提出了一个新颖的框架,该框架由两个相互补充的组件组成。首先,我们提出了一种基于生成对抗网络(GAN)的数据增强方法,该方法计算效率高,可促进域对齐。给定那些增强的图像,我们应用自组装来增强目标域上分割网络的性能。在无人监督的领域适应性基准测试中,该方法优于最新的语义分割方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号