首页> 外文会议>International Conference on Computer Vision >Self-Similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-Identification
【24h】

Self-Similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-Identification

机译:自相似性分组:用于人员重新识别的简单无监督跨域适应方法

获取原文

摘要

Domain adaptation in person re-identification (re-ID) has always been a challenging task. In this work, we explore how to harness the similar natural characteristics existing in the samples from the target domain for learning to conduct person re-ID in an unsupervised manner. Concretely, we propose a Self-similarity Grouping (SSG) approach, which exploits the potential similarity (from the global body to local parts) of unlabeled samples to build multiple clusters from different views automatically. These independent clusters are then assigned with labels, which serve as the pseudo identities to supervise the training process. We repeatedly and alternatively conduct such a grouping and training process until the model is stable. Despite the apparent simplify, our SSG outperforms the state-of-the-arts by more than 4.6% (DukeMTMC→Market1501) and 4.4% (Market1501→DukeMTMC) in mAP, respectively. Upon our SSG, we further introduce a clustering-guided semisupervised approach named SSG ++ to conduct the one-shot domain adaption in an open set setting (i.e. the number of independent identities from the target domain is unknown). Without spending much effort on labeling, our SSG ++ can further promote the mAP upon SSG by 10.7% and 6.9%, respectively. Our Code is available at: https://github.com/OasisYang/SSG .
机译:人员重新识别(re-ID)中的域适应一直是一项艰巨的任务。在这项工作中,我们探索如何利用目标域样本中存在的相似自然特征来学习以无人监督的方式进行人员重新识别。具体来说,我们提出一种自相似性分组(SSG)方法,该方法利用未标记样本的潜在相似性(从全局主体到局部)从不同的视图自动构建多个聚类。然后,为这些独立的群集分配标签,这些标签用作监督训练过程的伪身份。我们反复或替代地进行这样的分组和训练过程,直到模型稳定为止。尽管有明显的简化,但我们的SSG在mAP方面分别比最新技术高出4.6%(DukeMTMC→Market1501)和4.4%(Market1501→DukeMTMC)。在我们的SSG上,我们进一步引入了一种名为SSG ++的集群引导半监督方法,以在开放集设置中进行单次域自适应(即,来自目标域的独立身份的数量未知)。无需花费太多精力在标签上,我们的SSG ++可以进一步将SAP上的mAP提升10.7%和6.9%。我们的代码位于:https://github.com/OasisYang/SSG。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号