首页> 外文会议>International Conference on Computer Vision >Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization
【24h】

Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization

机译:通过弱监督的多尺度特定属性本地化改善行人属性识别

获取原文

摘要

Pedestrian attribute recognition has been an emerging research topic in the area of video surveillance. To predict the existence of a particular attribute, it is demanded to localize the regions related to the attribute. However, in this task, the region annotations are not available. How to carve out these attribute-related regions remains challenging. Existing methods applied attribute-agnostic visual attention or heuristic body-part localization mechanisms to enhance the local feature representations, while neglecting to employ attributes to define local feature areas. We propose a flexible Attribute Localization Module (ALM) to adaptively discover the most discriminative regions and learns the regional features for each attribute at multiple levels. Moreover, a feature pyramid architecture is also introduced to enhance the attribute-specific localization at low-levels with high-level semantic guidance. The proposed framework does not require additional region annotations and can be trained end-to-end with multi-level deep supervision. Extensive experiments show that the proposed method achieves state-of-the-art results on three pedestrian attribute datasets, including PETA, RAP, and PA-100K.
机译:行人属性识别已成为视频监控领域的新兴研究主题。为了预测特定属性的存在,需要定位与该属性有关的区域。但是,在此任务中,区域注释不可用。如何确定这些属性相关区域仍然具有挑战性。现有的方法应用了属性不可知的视觉注意力或启发式的身体局部定位机制来增强局部特征表示,而忽略了采用属性来定义局部特征区域。我们提出了一种灵活的属性本地化模块(ALM),以自适应地发现最具区分性的区域,并在多个级别上学习每个属性的区域特征。此外,还引入了特征金字塔体系结构,以在高级语义指导下增强低级别的特定于属性的本地化。所提出的框架不需要附加的区域注释,并且可以在多层次的深度监督下进行端到端的培训。大量实验表明,该方法在包括PETA,RAP和PA-100K在内的三个行人属性数据集上均达到了最新水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号