首页> 外文会议>International Conference on Computer Vision >Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data
【24h】

Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data

机译:域随机化和金字塔一致性:无需访问目标域数据即可实现从仿真到实际的泛化

获取原文

摘要

We propose to harness the potential of simulation for semantic segmentation of real-world self-driving scenes in a domain generalization fashion. The segmentation network is trained without any information about target domains and tested on the unseen target domains. To this end, we propose a new approach of domain randomization and pyramid consistency to learn a model with high generalizability. First, we propose to randomize the synthetic images with styles of real images in terms of visual appearances using auxiliary datasets, in order to effectively learn domain-invariant representations. Second, we further enforce pyramid consistency across different 'stylized' images and within an image, in order to learn domain-invariant and scale-invariant features, respectively. Extensive experiments are conducted on generalization from GTA and SYNTHIA to Cityscapes, BDDS, and Mapillary; and our method achieves superior results over the state-of-the-art techniques. Remarkably, our generalization results are on par with or even better than those obtained by state-of-the-art simulation-to-real domain adaptation methods, which access the target domain data at training time.
机译:我们建议利用模拟的潜力以领域泛化的方式对现实世界中自动驾驶场景进行语义分割。分割网络在没有任何有关目标域的信息的情况下进行了训练,并在看不见的目标域上进行了测试。为此,我们提出了一种新的域随机化和金字塔一致性方法,以学习具有高泛化性的模型。首先,我们建议使用辅助数据集根据视觉外观将具有真实图像样式的合成图像随机化,以便有效地学习领域不变表示。其次,我们进一步在不同的“风格化”图像之间以及图像内强制执行金字塔一致性,以便分别学习域不变特征和尺度不变特征。从GTA和SYNTHIA到Cityscapes,BDDS和Mapillary的泛化进行了广泛的实验;与我们的方法相比,我们的方法可获得更好的结果。值得注意的是,我们的泛化结果与在训练时访问目标域数据的最新模拟-真实域自适应方法获得的结果相同甚至更好。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号