首页> 外文会议>International Conference on Computer Vision >Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help?
【24h】

Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help?

机译:资源受限的神经网络体系结构搜索:亚模态假设会有所帮助吗?

获取原文

摘要

The design of neural network architectures is frequently either based on human expertise using trial/error and empirical feedback or tackled via large scale reinforcement learning strategies performed over distinct discrete architecture choices. In the latter case, the optimization is often non-differentiable and also not very amenable to derivative-free optimization methods. Most methods in use today require sizable computational resources. And if we want networks that additionally satisfy resource constraints, the above challenges are exacerbated because the search must now balance accuracy with certain budget constraints on resources. We formulate this problem as the optimization of a set function -- we find that the empirical behavior of this set function often (but not always) satisfies marginal gain and monotonicity principles -- properties central to the idea of submodularity. Based on this observation, we adapt algorithms within discrete optimization to obtain heuristic schemes for neural network architecture search, where we have resource constraints on the architecture. This simple scheme when applied on CIFAR-100 and ImageNet, identifies resource-constrained architectures with quantifiably better performance than current state-of-the-art models designed for mobile devices. Specifically, we find high-performing architectures with fewer parameters and computations by a search method that is much faster.
机译:神经网络体系结构的设计通常基于人类的经验,使用试验/错误和经验反馈,或者通过针对不同的离散体系结构选择执行的大规模强化学习策略来解决。在后一种情况下,优化通常是不可微的,并且也不太适合无导数优化方法。当今使用的大多数方法都需要大量的计算资源。而且,如果我们想要额外满足资源限制的网络,上述挑战将更加严峻,因为搜索现在必须在准确性和资源的某些预算限制之间取得平衡。我们将这个问题表述为对集合函数的优化-我们发现该集合函数的经验行为经常(但不总是)满足边际增益和单调性原理-亚模量思想的核心特性。基于此观察,我们在离散优化中调整算法以获得神经网络架构搜索的启发式方案,其中我们对架构有资源限制。这种简单的方案应用于CIFAR-100和ImageNet时,可以确定资源受限的体系结构,其性能要比当前为移动设备设计的最新模型更好。具体而言,我们通过更快的搜索方法找到了具有较少参数和计算量的高性能架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号