首页> 外文会议>International Conference on Computer Vision >UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation
【24h】

UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation

机译:UM-Adapt:使用对抗性跨任务精馏的无监督多任务适应

获取原文

摘要

Aiming towards human-level generalization, there is a need to explore adaptable representation learning methods with greater transferability. Most existing approaches independently address task-transferability and cross-domain adaptation, resulting in limited generalization. In this paper, we propose UM-Adapt - a unified framework to effectively perform unsupervised domain adaptation for spatially-structured prediction tasks, simultaneously maintaining a balanced performance across individual tasks in a multi-task setting. To realize this, we propose two novel regularization strategies; a) Contour-based content regularization (CCR) and b) exploitation of inter-task coherency using a cross-task distillation module. Furthermore, avoiding a conventional ad-hoc domain discriminator, we re-utilize the cross-task distillation loss as output of an energy function to adversarially minimize the input domain discrepancy. Through extensive experiments, we demonstrate superior generalizability of the learned representations simultaneously for multiple tasks under domain-shifts from synthetic to natural environments. UM-Adapt yields state-of-the-art transfer learning results on ImageNet classification and comparable performance on PASCAL VOC 2007 detection task, even with a smaller backbone-net. Moreover, the resulting semi-supervised framework outperforms the current fully-supervised multi-task learning state-of-the-art on both NYUD and Cityscapes dataset.
机译:为了人类层面的概括,需要探索具有更大可移植性的适应性表示学习方法。大多数现有方法独立地解决了任务可传递性和跨域适应问题,从而导致通用化有限。在本文中,我们提出了UM-Adapt-一个统一的框架,可以有效地执行针对空间结构化预测任务的无监督域自适应,同时在多任务设置中的各个任务之间保持平衡的性能。为了实现这一点,我们提出了两种新颖的正则化策略: a)基于轮廓的内容正则化(CCR),以及b)使用跨任务提炼模块实现任务间一致性。此外,避免了常规的ad-hoc域区分符,我们将跨任务蒸馏损失作为能量函数的输出进行重新利用,以对抗性地最小化输入域的差异。通过广泛的实验,我们证明了在从合成环境到自然环境的领域转移下,针对多个任务同时学习的表示具有出色的通用性。即使使用较小的骨干网,UM-Adapt仍可在ImageNet分类上获得最先进的传输学习结果,并在PASCAL VOC 2007检测任务上具有可比的性能。此外,在NYUD和Cityscapes数据集上,所得的半监督框架优于当前的全监督多任务学习的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号