首页> 外文会议>International Conference on Computer Science and Service System;CSSS 2012 >A Data Placement Method Based on Bayesian Network for Data-Intensive Scientific Workflows
【24h】

A Data Placement Method Based on Bayesian Network for Data-Intensive Scientific Workflows

机译:基于贝叶斯网络的数据密集型科学工作流数据放置方法

获取原文

摘要

For the data-intensive scientific workflows, large mount of data need to be stored and often been distributed into several data centers. So the data movements between different data centers become inevitable when the application executed. The more time the data movements, the less efficiency of the data-intensive application. This paper proposed a data placement method based on Bayesian network for data-intensive scientific workflows, which could effectively reduce the data movement time between different data centers. The validity of this method is discussed and illustrated by experiment.
机译:对于数据密集型科学工作流,需要存储大量数据,并且经常将其分发到多个数据中心。因此,当应用程序执行时,不同数据中心之间的数据移动变得不可避免。数据移动的时间越多,数据密集型应用程序的效率越低。本文提出了一种基于贝叶斯网络的数据密集型科学工作流数据放置方法,可以有效减少数据在不同数据中心之间的移动时间。实验验证并验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号