首页> 外文会议>International Conference on Computer Science Education >Short-term wind speed forecasting by combination of masking signal-based empirical mode decomposition and extreme learning machine
【24h】

Short-term wind speed forecasting by combination of masking signal-based empirical mode decomposition and extreme learning machine

机译:基于掩蔽信号的经验模式分解和极限学习机相结合的短期风速预测

获取原文

摘要

According to the requirement of accurate prediction of the short-term wind speed series, this paper proposes a new short-term combination prediction model of the wind speed series by means of the masking signal-based empirical mode decomposition (MS-EMD) and the extreme learning machine (ELM). Firstly, because of the non-stationary characteristics of the wind speed series, the wind speed series is decomposed into several components with different frequency bands by the MS-EMD to reduce the non-stationary characteristics. Secondly, in order to avoid the randomness of input dimensionality selection of the ELM, the phase space of each component is reconstructed. Thirdly, the ELM model of each component is established to predict the wind speed series. Finally, the predicted results of each component are superimposed to get the final result. The simulation result verifies that the proposed combination forecasting model is able to excavate the wind speed series features effectively and has relatively high prediction accuracy.
机译:根据准确预测短期风速序列的要求,本文提出了一种新的基于掩蔽信号的经验模态分解(MS-EMD)的风速序列短期组合预测模型。极限学习机(ELM)。首先,由于风速序列的非平稳特性,MS-EMD将风速序列分解为具有不同频带的几个分量,以减少非平稳特性。其次,为了避免ELM的输入维数选择的随机性,重建每个分量的相空间。第三,建立每个组件的ELM模型以预测风速序列。最后,将每个组件的预测结果叠加在一起,以获得最终结果。仿真结果验证了所提出的组合预测模型能够有效地挖掘风速序列特征,具有较高的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号