首页> 外文会议>International Conference on Computer Engineering, Network and Intelligent Multimedia >Semi Automatic Method for Basal Ganglia and White Matter Lesion Segmentation in MRI Images of Cronic Stroke Patients Using Adaptive Otsu
【24h】

Semi Automatic Method for Basal Ganglia and White Matter Lesion Segmentation in MRI Images of Cronic Stroke Patients Using Adaptive Otsu

机译:半自动方法在自适应大津市的中风患者MRI图像的基底节和白色物质病变分割中的应用

获取原文

摘要

Ischemic stroke is a stroke that occurs because the artery blockage that arises brings blood to the brain. Image of Magnetic Resonance Imaging (MRI) is widely used in diagnosing the type of brain ischemic stroke including stroke. To detect ischemic stroke on MRI, T2 Tl sequence utilizing a san. Fluid Attenuation Inversion Recovery (Flair) is suitable for detecting brain infarct. The difficulties faced by radiology experts occurs in the interpretation of the imagery that happened in the MRI images axial flair because of the complexity of the site caused by the artifacts caused by the movement of Physiology, the fault geometry, and the picture is not irregular. This research aims to minimize the occurrence of errors of interpretation of the MRI images axial Flair caused movement of the median filter using physiology as well as perform segmentation on a Region of Interest (ROI) using adaptive segmentation of otsu ischemic lacunar infarct patients for the chronic type. This research uses data from 50 patients they would stroke ischemic lacunar infarct with image sequences used are MRI images axial Flair. The image generated by the MRI T2 axial Flair sequence on the converted to ajpeg image and put the median filter to produce a clean copy of the description of the artifact. Prior segmentation, do remove skull so that the process of segmentation, ROI can distinguish the model of white matter and gray matter. The result of the segmentation will be produced as well as lacunar ROI value accuracy, and specificity segmentation comparison image of ground truth carried out by expert radiology of 99.99% and 96.8%.
机译:缺血性中风是由于发生的动脉阻塞将血液带入大脑而发生的中风。磁共振成像(MRI)图像广泛用于诊断脑缺血性中风的类型,包括中风。为了在MRI上检测缺血性中风,利用san的T2 T1序列。体液衰减反转恢复(Flair)适用于检测脑梗塞。放射学专家面临的困难发生在解释在MRI图像轴向光斑中发生的图像时,这是由于生理运动,断层几何形状和图像不规则造成的伪影所致的部位复杂性。这项研究的目的是通过使用生理学对大冢缺血性腔隙性梗塞患者进行适应性分割,以最大程度地减少使用生理学对中轴滤光片运动造成的轴向Flair引起的MRI图像解释的错误,以及对目标区域(ROI)进行分割类型。这项研究使用了来自50名将卒中缺血性腔隙性脑梗死患者的数据,所使用的图像序列是MRI图像的轴向Flair。由MRI T2轴向Flair序列生成的图像转换为ajpeg图像,并放入中值滤波器以生成伪影描述的清晰副本。在进行分割之前,请先去除颅骨,以便在分割过程中,ROI可以区分白质和灰质模型。将产生分割的结果,以及腔隙ROI值的准确性,以及由专家放射学进行的99.99%和96.8%的地面真相特异性分割比较图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号