首页> 外文会议>International Conference on Computer Communication and Networks >Task Scheduling with Optimized Transmission Time in Collaborative Cloud-Edge Learning
【24h】

Task Scheduling with Optimized Transmission Time in Collaborative Cloud-Edge Learning

机译:协同云边缘学习中具有优化传输时间的任务调度

获取原文

摘要

Deep learning has been applied in many recent advanced applications in the field of transportation, finance and medicine. These applications require significant computation resources and large-scale training samples. Cloud becomes a natural choice for conducting these learning tasks due to its abundant resources. However, deeper penetration of deep learning techniques in mission critical applications, like driverless car, calls for stricter time requirement to guarantee its interaction and larger amount of dataset for training to guarantee its accuracy, which cannot be easily satisfied by the cloud and makes the network transmission become the bottleneck. Edge learning emerges to be a promising direction to reduce data transmission time by processing and compressing the raw data at the edge of the network, while brings the concern of accuracy reduction at the meantime. To balance this tradeoff under cloud-edge architecture, we study a task scheduling problem for reducing weighted transmission time which takes learning accuracy into consideration. We also propose efficient scheduling algorithms which are able to achieve up to 50% reduction in makespan with extensive trace-driven simulations.
机译:深度学习已应用于交通,金融和医学领域的许多最新高级应用中。这些应用需要大量的计算资源和大规模的培训样本。云由于其丰富的资源而成为执行这些学习任务的自然选择。然而,深度学习技术在无人驾驶汽车等关键任务应用中的更深入渗透要求更严格的时间要求以确保其交互性,并需要大量的训练数据集以确保其准确性,这是云无法轻易满足的并使网络传播成为瓶颈。通过在网络边缘处理和压缩原始数据,边缘学习已成为减少数据传输时间的一个有希望的方向,同时带来了降低精度的担忧。为了在云边缘架构下平衡这种权衡,我们研究了一种任务调度问题,以减少加权传输时间,同时考虑了学习准确性。我们还提出了有效的调度算法,通过广泛的跟踪驱动模拟,该算法能够将制造时间减少多达50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号