首页> 外文会议>International Conference on Computer and Knowledge Engineering >Fast Motif Discovery Using a New Motif Extension Algorithm
【24h】

Fast Motif Discovery Using a New Motif Extension Algorithm

机译:使用新的Motif扩展算法进行快速Motif发现

获取原文

摘要

In biology, proteins are modeled as a long chain of amino acids in primary structure. Generally, each protein is composed of 20 types of amino acids and the number and the arrangement of amino acids vary among different proteins. A sequence motif is a repeated pattern of consecutive amino acids in the primary structure of proteins which can provide information about some important biological features such as transcription factor binding and protein-protein interaction sites. In this paper, we proposed a new motif extension algorithm to enhance the performance of de Bruijn which is one of the recent motif discovery algorithms. The proposed algorithm receives an initial set of candidate motifs and tries to extend them to a desired length using a two-sided approach. In the proposed algorithm, the problem state is limited by a similarity threshold which is given by the user as a constraint. The algorithm for the development of candidate motifs always selects a characters whose appearance are greater than that of the specified similarity threshold. We conducted some experiments on real hardware and real inputs to evaluate our algorithm. The results showed that the proposed algorithm is at least 20 times faster than the original de Bruijn algorithm. Furthermore, the average similarity of identified motifs to the input protein family was 28% higher than the counterpart.
机译:在生物学中,蛋白质被建模为一级结构中的长氨基酸序列。通常,每种蛋白质由20种氨基酸组成,不同蛋白质之间氨基酸的数目和排列方式有所不同。序列基序是蛋白质一级结构中连续氨基酸的重复模式,可以提供有关一些重要生物学特征(例如转录因子结合和蛋白质-蛋白质相互作用位点)的信息。在本文中,我们提出了一种新的主​​题扩展算法,以提高de Bruijn的性能,这是最近的主题发现算法之一。所提出的算法接收候选图案的初始集合,并尝试使用双面方法将其扩展到所需的长度。在提出的算法中,问题状态受用户给出的相似性阈值的约束。用于开发候选图案的算法始终选择外观大于指定相似度阈值的字符。我们在真实的硬件和真实的输入上进行了一些实验,以评估我们的算法。结果表明,提出的算法比原始的de Bruijn算法至少快20倍。此外,已识别的基序与输入蛋白家族的平均相似度比对应基序高28%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号