首页> 外文会议>International Conference on Computer and Knowledge Engineering >Enhancement of CT Brain Images Classification Based on Deep Learning Network with Adaptive Activation Functions
【24h】

Enhancement of CT Brain Images Classification Based on Deep Learning Network with Adaptive Activation Functions

机译:基于深度学习网络的自适应激活功能增强CT脑图像分类

获取原文

摘要

Deep neural networks are one of the most important branches of machine learning that have been recently used in many fields of pattern recognition and machine vision applications successfully. One of the most famous networks in this area is convolutional neural networks which are biologically inspired variants of multi-layer perceptions. In these networks, activation function plays a significant role especially when the data come in different scales. Recently, there is an interest to adaptive activation functions which adapts their parameters to the input data during network training process. Therefore, in this paper, inspired from a successful convolutional neural network tuned for medical image classification, we have investigated the effect of applying adaptive activation functions in a modified convolutional network by combining basic activation functions in linear (mixed) and nonlinear (gated) ways. The effectiveness of using these adaptive functions is shown on a CT brain images dataset (as a complex medical dataset) and the well-known MNIST hand-written digits dataset. The done experiments show that the classification accuracy of the proposed network with adaptive activation functions is higher compared to the ones using basic activation functions.
机译:深度神经网络是机器学习最重要的分支之一,近来成功地将其用于模式识别和机器视觉应用的许多领域。卷积神经网络是该领域最著名的网络之一,它是受到生物启发的多层感知的变体。在这些网络中,激活功能起着重要作用,尤其是当数据以不同的比例进入时。近来,对自适应激活功能感兴趣,其在网络训练过程期间使它们的参数适应输入数据。因此,在本文中,受成功地针对医学图像分类进行调整的卷积神经网络的启发,我们研究了通过将基本激活函数以线性(混合)和非线性(门控)方式组合在一起,在改进的卷积网络中应用自适应激活函数的效果。在CT脑图像数据集(作为复杂的医学数据集)和众所周知的MNIST手写数字数据集上显示了使用这些自适应功能的有效性。实验结果表明,与具有基本激活功能的网络相比,具有自适应激活功能的网络分类精度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号