首页> 外文会议>International Conference on Computer and Knowledge engineering >A reinforcement learning approach to score goals in RoboCup 3D soccer simulation for nao humanoid robot
【24h】

A reinforcement learning approach to score goals in RoboCup 3D soccer simulation for nao humanoid robot

机译:用于Nao人形机器人的RoboCup 3D足球模拟中得分目标的强化学习方法

获取原文

摘要

Reinforcement learning is one of the best methods to train autonomous robots. Using this method, a robot can learn to make optimal decisions without detailed programming and hard coded instructions. So, this method is useful for learning complex robotic behaviors. For example, in RoboCup competitions this method will be very useful in learning different behaviors. We propose a method for training a robot to score a goal from anywhere on the field by one or more kicks. Using reinforcement learning, Nao robot will learn the optimal policy to kick towards desired points correctly. Learning process is done in two phases. In the first phase, Nao learns to kick such that the ball goes more distance with minimum divergence from the desired path. In the second phase, the robot learns an optimal policy to score a goal by one or more kicks. Using this method, our robot performance increased significantly compared with kicking towards predetermined points in the goal.
机译:强化学习是训练自主机器人的最佳方法之一。使用这种方法,机器人可以学习做出最佳决策,而无需详细的编程和硬编码的指令。因此,此方法对于学习复杂的机器人行为很有用。例如,在RoboCup比赛中,此方法对于学习不同行为非常有用。我们提出了一种训练机器人以一个或多个踢球从现场任何地方进球的方法。通过强化学习,Nao机器人将学习最佳策略,以正确地踢向所需点。学习过程分为两个阶段。在第一阶段,Nao学会踢脚,使球走得更远,并且与期望路径的差异最小。在第二阶段,机器人学习一种最优策略,以一个或多个脚踢得分。与逼近目标的预定点相比,使用这种方法,我们的机器人性能显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号