首页> 外文会议>International Conference on Computer and Information Sciences;World Engineering, Science Technology Congress >Parallelisation of maximal patterns finding algorithm in biological sequences
【24h】

Parallelisation of maximal patterns finding algorithm in biological sequences

机译:生物序列中最大模式发现算法的并行化

获取原文

摘要

The rapid increase of the biological data opens up new challenges for scientists to discover new methods to manage, analyses and understand them effectively. One of the methods in analysing these biological data is by looking at the maximal patterns that exists in the data. Discovering the relationship among the biological sequences is based on the importance of the maximal patterns of these sequences. These maximal patterns can be used to build indexes a faster search. In this research, we used parallel methods to improve the speed of an existing maximal pattern finding algorithm, TEIRESIAS. There are two phases in the algorithm, which are the scanning and the convolution phases. The first phase detects short patterns in the biological data and the second phase combines the short patterns into longer patterns without sacrificing the meaning. The output will be maximal patterns. The first phase of the algorithm is very compute intensive. We improve the overall process of finding maximal patterns by decomposing the biological database and by distributing it to be input into to the TEIRESIAS algorithm. We applied the master-slave model and used OpenMP to implement the model. Our results show that the performance decreased when we used 8 threads. The results also show that there are 1.6 time and 2.0 times improvement in terms of the overall speed of the algorithm when we used two threads and four.
机译:生物数据的迅速增加为科学家发现新的方法以发现有效管理,分析和理解它们的方法提出了新的挑战。分析这些生物学数据的方法之一是查看数据中存在的最大模式。发现生物学序列之间的关系是基于这些序列的最大模式的重要性。这些最大模式可用于建立索引,从而加快搜索速度。在这项研究中,我们使用并行方法来提高现有最大模式发现算法TEIRESIAS的速度。该算法有两个阶段,即扫描阶段和卷积阶段。第一阶段在生物学数据中检测短模式,第二阶段在不牺牲含义的情况下将短模式组合为更长的模式。输出将是最大模式。该算法的第一阶段非常耗费计算资源。我们通过分解生物学数据库并将其分配为TEIRESIAS算法的输入,从而改善了找到最大模式的总体过程。我们应用了主从模型,并使用OpenMP来实现该模型。我们的结果表明,当我们使用8个线程时,性能会下降。结果还表明,当我们使用两个线程和四个线程时,该算法的整体速度分别提高了1.6倍和2.0倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号