首页> 外文会议>International Conference on Computer and Information Sciences;World Engineering, Science Technology Congress >A new clustering approach for group detection in scene-independent dense crowds
【24h】

A new clustering approach for group detection in scene-independent dense crowds

机译:一种新的聚类方法,用于场景无关的密集人群中的群体检测

获取原文

摘要

Despite significant progress in crowd behaviour analysis over the past few years, most of today's state of the art algorithms focus on analysing individual behaviour in a specific-scene. Recently, the widespread availability of cameras and a growing need for public safety have shifted the attention of researchers in video surveillance from individual behavior analysis to group and crowd behavior analysis. However, dangerous and illegal behaviours are mostly occurred from groups of people. Group detection is the main process to separate people in crowded scene into different group based on their interactions. Results of group detection can further to apply in analyze group and crowd behaviour. This paper present a study of the group detection and propose a novel approach for clustering group of people in different crowded scenes based on trajectories. For the clustering of group of people we propose novel formula to compute the weights based on the distance, the occurrence, and the speed correlations of two people in a tracklet cluster to infer the people relationship in a tracklet clusters with Expectation Maximization (EM) in order to overcome occlusion in crowded scenes.
机译:尽管过去几年在人群行为分析方面取得了重大进展,但当今大多数先进的算法都专注于分析特定场景中的个人行为。近来,摄像机的广泛普及和对公共安全的日益增长的需求已将研究人员对视频监视的关注从个人行为分析转移到了群体和人群行为分析。但是,危险和非法行为大多来自人群。分组检测是将拥挤场景中的人们根据其交互作用分成不同组的主要过程。小组检测的结果可以进一步应用于分析小组和人群行为。本文对群体检测进行了研究,并提出了一种基于轨迹对不同拥挤场景中的人群进行聚类的新方法。对于人群的聚类,我们提出了一种新颖的公式来基于小人物簇中两个人的距离,发生情况和速度相关性来计算权重,从而利用期望最大化(EM)推断小人物簇中的人物关系。为了克服拥挤场景中的遮挡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号