首页> 外文会议>International Conference on Computational Semantics >Semantic Similarity Computation for and Concrete Nouns Using Network-based Distributional Semantic Models
【24h】

Semantic Similarity Computation for and Concrete Nouns Using Network-based Distributional Semantic Models

机译:基于网络的分布语义模型的语义与具体名词语义相似度计算

获取原文

摘要

Motivated by cognitive lexical models, network-based distributional semantic models (DSMs) were proposed in [Iosif and Potamianos (2013)] and were shown to achieve state-of-the-art performance on semantic similarity tasks. Based on evidence for cognitive organization of concepts based on degree of concreteness, we investigate the performance and organization of network DSMs for vs. concrete nouns. Results show a 'concrete-ness effect' for semantic similarity estimation. Network DSMs that implement the maximum sense similarity assumption perform best for concrete nouns, while attributional network DSMs perform best for nouns. The performance of metrics is evaluated against human similarity ratings on an English and a Greek corpus.
机译:在认知词汇模型的推动下,[Iosif and Potamianos(2013)]提出了基于网络的分布语义模型(DSM),并被证明可以在语义相似性任务上达到最先进的性能。基于基于具体程度的概念的认知组织证据,我们研究了网络DSM相对于具体名词的性能和组织。结果显示了语义相似度估计的“具体效果”。实施最大感觉相似性假设的网络DSM对于具体名词表现最佳,而归因网络DSM对名词则表现最好。针对英语和希腊语语料库上的人类相似性等级,评估指标的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号