首页> 外文会议>International Conference on Computational Science and its Applications >A Two-Phase Bug Localization Approach Based on Multi-layer Perceptrons and Distributional Features
【24h】

A Two-Phase Bug Localization Approach Based on Multi-layer Perceptrons and Distributional Features

机译:基于多层感知器和分布特征的两阶段缺陷定位方法

获取原文

摘要

Bug localization is a challenging and time-consuming task of the process of bug fixing and, more in general, of software maintenance. Several approaches have been proposed in the literature which support developers in this task by identifying source code files in which the bug is likely to be located. However, the research on this topic never stopped, looking for new methods providing better accuracy and/or better efficiency. In this paper, we propose a two-phase bug localization approach which leverages multi-layer neural networks and distributional features. First phase locations are obtained thanks to a neural network trained on word embeddings representations of fixed bug reports. The second phase refines bug locations taking into account the number of times source code files co-occur in fixed bug locations. To evaluate the approach, we conducted a large-scale experiment on five open source projects, namely Mozilla, Eclipse, Dolphin, httpd, and gcc. Results show that, thanks to pre-trained word embeddings, we were able to implement a scalable approach with a training running time of few hours on large datasets. Performances are comparable to other existing deep learning approaches.
机译:错误本地化是错误修复以及更一般的软件维护过程中一项既艰巨又耗时的任务。文献中已经提出了几种方法,这些方法通过标识可能位于该错误中的源代码文件来支持开发人员执行此任务。然而,关于该主题的研究从未间断,寻找提供更好的准确性和/或更好的效率的新方法。在本文中,我们提出了一种利用多层神经网络和分布特征的两阶段错误定位方法。通过对固定错误报告的词嵌入表示形式进行训练的神经网络,可以获得第一阶段的位置。第二阶段考虑到源代码文件在固定错误位置中同时出现的次数,对错误位置进行了细化。为了评估该方法,我们在五个开源项目(Mozilla,Eclipse,Dolphin,httpd和gcc)上进行了大规模实验。结果表明,由于预训练了词的嵌入,我们能够在大型数据集上以数小时的训练时间来实施可扩展的方法。性能可与其他现有深度学习方法媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号