首页> 外文会议>International Conference on Computational Science >A Framework for Distributed Approximation of Moments with Higher-Order Derivatives Through Automatic Differentiation
【24h】

A Framework for Distributed Approximation of Moments with Higher-Order Derivatives Through Automatic Differentiation

机译:通过自动微分对高阶导数进行矩分布近似的框架

获取原文

摘要

We present a framework for the distributed approximation of moments, enabling the evaluation of the uncertainty in a dynamical system. The first and second moment, mean, and variance are computed with up to third-order Taylor series expansion. The required derivatives for the expansion are generated automatically by automatic differentiation and propagated through an implicit time stepper. The computational kernels are the accumulation of the derivatives (Jacobian, Hessian, tensor) and the covariance matrix. We apply distributed parallelism to the Hessian or third-order tensor, and the user merely has to provide a function for the differential equation, thus achieving similar ease of use as Monte Carlo-based methods. We demonstrate our approach using with benchmarks on Theta, a KNL-based system at the Argonne Leadership Computing Facility.
机译:我们提出了矩的分布式近似的框架,从而能够评估动力系统中的不确定性。第一和第二矩,均值和方差是使用三阶泰勒级数展开式计算的。扩展所需的导数由自动微分自动生成,并通过隐式时间步进器传播。计算核心是导数(Jacobian,Hessian,张量)和协方差矩阵的累加。我们将分布式并行性应用于Hessian或三阶张量,并且用户只需为微分方程提供一个函数,从而获得与基于Monte Carlo的方法相似的易用性。我们使用Theta(在Argonne领导力计算设施中基于KNL的系统)上的基准测试来演示我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号