首页> 外文会议>International Conference on Computational Intelligence and Knowledge Economy >Literature Review of Generative models for Image-to-Image translation problems
【24h】

Literature Review of Generative models for Image-to-Image translation problems

机译:图像到图像翻译问题生成模型的文献综述

获取原文

摘要

In recent years, data-driven (image based) methodologies like deep learning and computer vision have made computers immensely accurate in terms of identifying features inside images. Research in this area has given way to a relatively new set of deep learning models known as Generative models which generate images alongside identifying features inside them. These models, particularly conditional generative adversarial networks (CGANs), conditional variational autoencoders (CVAE) and generative stochastic networks (GSN) have become popular as they are able to translate images from one setting to another while keeping the structure of generated images aligned with the input images. In this paper, we review the work that has been done using these models to the area of web design automation which needs to be considered during the development phase. We also try to identify the benefits of implementing these models based on architectural features while keeping in view the different problem scenarios. Finally, some key challenges in solving such image-to-image translation problems has been mentioned.
机译:近年来,像深度学习和计算机视觉这样的数据驱动(基于图像)方法已使计算机在识别图像内部特征方面极为精确。在这一领域的研究已经让位于相对较新的一组深度学习模型,这些模型称为生成模型,该模型在生成图像以及识别内部特征的同时,还会生成图像。这些模型,特别是条件生成对抗网络(CGAN),条件变分自动编码器(CVAE)和生成随机网络(GSN)已广受欢迎,因为它们能够将图像从一种设置转换为另一种设置,同时使生成的图像结构与输入图像。在本文中,我们回顾了在开发阶段需要考虑使用这些模型完成的Web设计自动化领域的工作。我们还尝试确定基于架构功能实现这些模型的好处,同时注意不同的问题场景。最后,提到了解决此类图像到图像翻译问题的一些关键挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号