首页> 外文会议>International Conference on Computational Electromagnetics >Application of Gradient Learning Scheme to Pixel-Based Inversion for Transient EM Data
【24h】

Application of Gradient Learning Scheme to Pixel-Based Inversion for Transient EM Data

机译:梯度学习方案在瞬态电磁数据基于像素的反演中的应用

获取原文

摘要

Traditional gradient descent inversion for transient electromagnetic (TEM) data is time and memory comsuming because the derivative matrices need to be computed repeatly. In this paper, we apply the Supervised Descent Method (SDM) into pixel-based inversion for TEM data. This method is based on the concept of gradient learning. In an offline stage, the average descent direction can be learned from a set of training data; and in an online stage, data inversion can be achieved by the learned descent directions without computing the derivative matrices. Numerical tests verify that this algorithm converges faster and is also more efficient. Moreover, SDM offers a more convinient way to incorporate prior information into inversion that could improve the efficiency of data interpretation.
机译:对于瞬态电磁(TEM)数据,传统的梯度下降反演需要花费时间和内存,因为导数矩阵需要重复计算。在本文中,我们将监督下降法(SDM)应用于基于像素的TEM数据反演。该方法基于梯度学习的概念。在离线阶段,可以从一组训练数据中获知平均下降方向。在在线阶段,可以通过学习的下降方向实现数据反演,而无需计算导数矩阵。数值测试证明,该算法收敛速度更快,效率更高。此外,SDM提供了一种更方便的方法,可以将先验信息合并到反演中,从而可以提高数据解释的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号