首页> 外文会议>International conference on computational and information sciences >Parallel Continuous k-Nearest Neighbor Computing in Location Based Spatial Networks on GPUs
【24h】

Parallel Continuous k-Nearest Neighbor Computing in Location Based Spatial Networks on GPUs

机译:GPU上基于位置的空间网络中的并行连续k最近邻计算

获取原文

摘要

The k nearest neighbor (kNN) computing is an important task in different fields such as LBSN and database area. Recently some methods have been proposed to accelerate kNN searching algorithms for static points with GPUs. To evaluate massive concurrent queries towards mobile objects in spatial networks, we present a multi-staged framework MSF to improve the parallelism with multi-threaded technology, which departs the query processing into three simultaneous stages for continuous kNN queries processing. Further, in-memory spatial network adjacent matrix, shortest path matrix and hash table structures are introduced to describe the road network topology and store the mobile objects. Under MSF framework a GPU-SPNE algorithm is proposed to decrease the computing cost of kNN queries by using threaded workload parallelism. Experimental evaluation shows that GPU-SPNE algorithm achieves a performance improvement about one to two orders of magnitude over its CPU counterparts, and still performs better than the brute-force algorithm on GPU in all conditions.
机译:在LBSN和数据库区域等不同领域,k最近邻(kNN)计算是一项重要任务。最近,已经提出了一些方法来利用GPU加速针对静态点的kNN搜索算法。为了评估对空间网络中的移动对象的大量并发查询,我们提出了一种多阶段框架MSF,以利用多线程技术改善并行性,该技术将查询处理分为三个同时进行的连续kNN查询处理阶段。此外,引入了内存空间网络相邻矩阵,最短路径矩阵和哈希表结构来描述道路网络拓扑并存储移动对象。在MSF框架下,提出了一种GPU-SPNE算法,以通过使用线程工作负载并行性来降低kNN查询的计算成本。实验评估表明,GPU-SPNE算法在性能上比其CPU同类产品提高了大约一到两个数量级,并且在所有条件下仍比蛮力算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号