首页> 外文会议>International Conference on Circuits and Systems in Digital Enterprise Technology >Identifying Relevant Text from Text Document Using Deep Learning
【24h】

Identifying Relevant Text from Text Document Using Deep Learning

机译:使用深度学习从文本文档中识别相关文本

获取原文

摘要

Now-a-days the amount of information available on the web is enormous and incrementing at an exponential rate. Thus identifying relevant text from text document has become very crucial. Text classification is the task of relegating a document under a predefined category. There are several methods to identify which words in text documents are important to explain the category it is associated with. The proposed approach uses convolution neural network with deep learning. And the deep learning is used to predict the categories accurately. Thus by calculating the test's accuracy by F1 Score, we get an accuracy value which is approximately equal to 1.
机译:如今,网络上可用的信息量巨大,并且呈指数级增长。因此,从文本文档中识别相关文本变得非常关键。文本分类是将文档降级到预定义类别下的任务。有几种方法可以确定文本文档中的哪些单词对于解释与之关联的类别很重要。所提出的方法将卷积神经网络与深度学习结合使用。深度学习用于准确预测类别。因此,通过按F1分数计算测试的准确性,我们得到的准确性值大约等于1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号