首页> 外文会议>International Conference on Bioinformatics and Systems Biology >Performance Evaluation of AI Based Load Balancing Algorithm (Reinforcement Learning) with other load balancing algorithms in a JPPF Grid: E.coli Genome Sequence Alignment Problem
【24h】

Performance Evaluation of AI Based Load Balancing Algorithm (Reinforcement Learning) with other load balancing algorithms in a JPPF Grid: E.coli Genome Sequence Alignment Problem

机译:JPPF网格中基于AI的负载均衡算法(增强学习)与其他负载均衡算法的性能评估:大肠杆菌基因组序列比对问题

获取原文

摘要

Recent development of computational analysis in the field of genomics and proteomics has necessitated the use of high performance computing architectures such as grid, cluster and parallel computing. In this paper an attempt has been made to study the performance enhancement by optimization of various Load Balancing Algorithms (LBAs) and E.coli genome sequence alignment (using PAM 120 substitution matrix) was performed on the grid. We have achieved a performance gain of 11.72 times with just 8 processing nodes in comparison to serial execution time using artificial intelligence based LBA parameter optimization.
机译:在基因组学和蛋白质组学领域中,计算分析的最新发展使得必须使用诸如网格,集群和并行计算之类的高性能计算架构。本文尝试通过优化各种负载平衡算法(LBA)和在网格上进行大肠杆菌基因组序列比对(使用PAM 120替换矩阵)来研究性能增强。与基于人工智能的LBA参数优化的串行执行时间相比,仅8个处理节点就实现了11.72倍的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号