首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Active Authentication using an Autoencoder regularized CNN-based One-Class Classifier
【24h】

Active Authentication using an Autoencoder regularized CNN-based One-Class Classifier

机译:使用自动编码器正则化基于CNN的一类分类器进行主动身份验证

获取原文

摘要

Active authentication refers to the process in which users are unobtrusively monitored and authenticated continuously throughout their interactions with mobile devices. Generally, an active authentication problem is modelled as a one class classification problem due to the unavailability of data from the impostor users. Normally, the enrolled user is considered as the target class (genuine) and the unauthorized users are considered as unknown classes (impostor). We propose a convolutional neural network (CNN) based approach for one class classification in which a zero centered Gaussian noise and an autoencoder are used to model the pseudo-negative class and to regularize the network to learn meaningful feature representations for one class data, respectively. The overall network is trained using a combination of the cross-entropy and the reconstruction error losses. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. Effectiveness of the proposed framework is demonstrated using three publically available face-based active authentication datasets and it is shown that the proposed method achieves superior performance compared to the traditional one class classification methods. The source code is available at : github.com/otkupjnoz/oc-acnn.
机译:主动身份验证是指在用户与移动设备进行交互的整个过程中,对其进行连续监视和连续身份验证的过程。通常,由于来自冒名顶替者用户的数据不可用,主动身份验证问题被建模为一类分类问题。通常,将已注册用户视为目标类别(正版),将未授权用户视为未知类别(冒名顶替者)。我们为一类分类提出了一种基于卷积神经网络(CNN)的方法,其中使用零中心高斯噪声和自动编码器对伪负类建模,并对网络进行正则化以分别学习一类数据的有意义的特征表示。使用交叉熵和重构误差损失的组合来训练整个网络。提出的方法的关键特征是,任何经过预训练的CNN都可以用作一类分类的基础网络。使用三个公开可用的基于面部的主动身份验证数据集证明了该框架的有效性,并且表明与传统的一类分类方法相比,该方法具有更高的性能。源代码位于:github.com/otkupjnoz/oc-acnn。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号