首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Fully End-to-End Composite Recurrent Convolution Network for Deformable Facial Tracking In The Wild
【24h】

Fully End-to-End Composite Recurrent Convolution Network for Deformable Facial Tracking In The Wild

机译:全面的端到端复合循环卷积网络,用于野外可变形的面部跟踪

获取原文

摘要

Human facial tracking is an important task in computer vision, which has recently lost pace compared to other facial analysis tasks. The majority of current available tracker possess two major limitations: their little use of temporal information and the widespread use of handcrafted features, without taking full advantage of the large annotated datasets that have recently become available. In this paper we present a fully end-to-end facial tracking model based on current state of the art deep model architectures that can be effectively trained from the available annotated facial landmark datasets. We build our model from the recently introduced general object tracker Re
机译:人脸跟踪是计算机视觉中的一项重要任务,与其他人脸分析任务相比,它最近已经失去了步伐。当前大多数可用的跟踪器都有两个主要局限性:它们对时间信息的很少使用和手工制作功能的广泛使用,而没有充分利用最近可用的大型带注释的数据集。在本文中,我们提出了一个基于当前最先进的深度模型架构的完整的端到端面部跟踪模型,该模型可以从可用的带注释的面部界标数据集中进行有效训练。我们从最近推出的通用对象跟踪器Re建立模型

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号