首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries
【24h】

Time-series Clustering with Jointly Learning Deep Representations, Clusters and Temporal Boundaries

机译:具有联合学习深度表示,聚类和时间边界的时间序列聚类

获取原文

摘要

Clustering and segmentation of temporal data is an important task across several fields, with prominent applications in computer vision and machine learning such as face and gesture segmentation. Several related methods have been proposed in literature, focusing on learning temporal boundaries and clusters, with recent works focusing on learning deep representations for clustering. However, none of the proposed methods is suitable for jointly learning segments, clusters, as well as representations. In this paper, we propose the first methodology that simultaneously discovers suitable deep representations, as well as clusters and temporal boundaries, with the clustering process providing supervisory cues for updating temporal boundaries and training the proposed deep learning architecture. We demonstrate the power of the proposed approach on a human motion segmentation task using the CMU-MMAC database. Our method provides the best results with respect to normalized mutual information compared to other clustering algorithms.
机译:时间数据的聚类和分割是跨多个领域的一项重要任务,在计算机视觉和机器学习(如面部和手势分割)中具有突出的应用。文献中已经提出了几种相关的方法,着重于学习时间边界和聚类,而最近的工作则着重于学习用于聚类的深度表示。但是,所提出的方法均不适合联合学习段,聚类和表示形式。在本文中,我们提出了第一种方法,该方法同时发现合适的深度表示以及聚类和时间边界,而聚类过程为更新时间边界和训练拟议的深度学习体系结构提供了监督线索。我们使用CMU-MMAC数据库演示了所提出的方法对人体运动分割任务的作用。与其他聚类算法相比,我们的方法在标准化互信息方面提供了最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号