首页> 外文会议>International Conference on Artificial Intelligence and Security >Application of Machine Learning Methods for Material Classification with Multi-energy X-Ray Transmission Images
【24h】

Application of Machine Learning Methods for Material Classification with Multi-energy X-Ray Transmission Images

机译:机器学习方法在多能X射线透射图像材料分类中的应用

获取原文

摘要

Automatic material classification is very useful for threat detection with X-ray screening technology. In this paper, we propose the use of machine learning methods to the problem of fine-grained classification of organic matters based on multi-energy transmission images, which has been overlooked by existing methods. The method which we propose consists three main steps: spectrum analysis, feature selection and supervised classification. We show detailed analysis of the relationship between feature dimension and material classification accuracy. Our method can also be used to find optimal X-ray configurations for material classification. We compare the performance of several machine learning models for the fine-grained classification task. For the task of classifying three categories of organic matters, we can obtain the classification accuracy higher than 85% with only X-ray measurements with the dimension of four. In conclusion, the results of our paper provide one promising direction for the automatic identification of organic contraband using multi-energy X-ray imaging techniques.
机译:自动材料分类对于使用X射线检查技术进行威胁检测非常有用。在本文中,我们提出使用机器学习方法来解决基于多能量传输图像的有机物细粒度分类问题,而现有方法却忽略了这种方法。我们提出的方法包括三个主要步骤:频谱分析,特征选择和监督分类。我们将详细分析特征尺寸与材料分类精度之间的关系。我们的方法还可用于寻找最佳X射线配置以进行材料分类。我们比较了针对细粒度分类任务的几种机器学习模型的性能。对于将有机物分为三类的任务,仅使用尺寸为四维的X射线测量,我们就可以获得高于85%的分类精度。总之,本文的结果为利用多能X射线成像技术自动识别有机违禁品提供了一个有希望的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号