首页> 外文会议>International Conference on Artificial Intelligence in Education >Automated Summarization Evaluation (ASE) Using Natural Language Processing Tools
【24h】

Automated Summarization Evaluation (ASE) Using Natural Language Processing Tools

机译:使用自然语言处理工具的自动汇总评估(ASE)

获取原文

摘要

Summarization is an effective strategy to promote and enhance learning and deep comprehension of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation of students' summaries requires time and effort. This problem has led to the development of automated models of summarization quality. However, these models often rely on features derived from expert ratings of student summarizations of specific source texts and are therefore not generalizable to summarizations of new texts. Further, many of the models rely of proprietary tools that are not freely or publicly available, rendering replications difficult. In this study, we introduce an automated summarization evaluation (ASE) model that depends strictly on features of the source text or the summary, allowing for a purely text-based model of quality. This model effectively classifies summaries as either low or high quality with an accuracy above 80%. Importantly, the model was developed on a large number of source texts allowing for generalizability across texts. Further, the features used in this study arc freely and publicly available affording replication.
机译:摘要是一种有效的策略,可以促进和增强对文本的学习和深入理解。但是,教师很少在教室中进行摘要,因为对学生摘要的人工评估需要时间和精力。这个问题导致了总结质量的自动化模型的发展。但是,这些模型通常依赖于对特定源文本的学生摘要进行专家评级得出的功能,因此无法推广到新文本的摘要。此外,许多模型依赖于无法免费或公开使用的专有工具,从而使复制变得困难。在这项研究中,我们介绍了一种自动摘要评估(ASE)模型,该模型严格取决于源文本或摘要的功能,从而可以建立基于文本的纯质量模型。该模型有效地将摘要分类为低质量或高质量,其准确性高于80%。重要的是,该模型是在大量源文本上开发的,从而可以跨文本进行泛化。此外,本研究中使用的功能可自由公开获取,可以复制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号