首页> 外文会议>International Conference on Applications of Natural Language to Information Systems >Deep Neural Network Models for Paraphrased Text Classification in the Arabic Language
【24h】

Deep Neural Network Models for Paraphrased Text Classification in the Arabic Language

机译:用于阿拉伯语释义文本分类的深度神经网络模型

获取原文

摘要

Paraphrase is the act of reusing original texts without proper citation of the source. Different obfuscation operations can be employed such as addition/deletion of words, synonym substitutions, lexical changes, active to passive switching, etc. This phenomenon dramatically increased because of the progressive advancement of the web and the automatic text editing tools. Recently, deep leaning methods have gained competitive results than traditional methods for Natural Language Processing (NLP). In this context, we consider the problem of Arabic paraphrase detection. We present different deep neural networks like Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). Our aim is to study the effective of each one in extracting the proper features of sentences without the knowledge of semantic and syntactic structure of Arabic language. For the experiments, we propose an automatic corpus construction seeing the lack of Arabic resources publicly available. Evaluations reveal that LSTM model achieved the higher rate of semantic similarity and outperformed significantly other state-of-the-art methods.
机译:复述是在没有适当引用来源的情况下重用原始文本的行为。可以采用不同的混淆操作,例如单词的添加/删除,同义词替换,词法变化,从主动切换到被动切换等。由于网络和自动文本编辑工具的逐步发展,这种现象急剧增加。近年来,深度学习方法比自然语言处理(NLP)的传统方法获得了竞争优势。在这种情况下,我们考虑阿拉伯语释义检测的问题。我们提出了不同的深度神经网络,例如卷积神经网络(CNN)和长期短期记忆(LSTM)。我们的目的是研究每个人在不了解阿拉伯语的语义和句法结构的情况下提取句子的适当特征的有效性。对于实验,鉴于缺乏可公开获得的阿拉伯资源,我们提出了一种自动语料库构造。评估表明,LSTM模型的语义相似度更高,并且明显优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号