首页> 外文会议>International Conference on Algorithmic Applications in Management >Low-Dimensional Vectors with Density Bounded by 5/6 Are Pinwheel Schedulable
【24h】

Low-Dimensional Vectors with Density Bounded by 5/6 Are Pinwheel Schedulable

机译:密度为5/6的低维向量是风车可调度的

获取原文

摘要

Given an n-dimensional integer vector v = (v_1, v_2,..., v_n) with 2 ≤ v_1 ≤ v_2 ≤ • • • ≤ v_n, a pinwheel schedule for v is referred to as an infinite symbol sequence S_1S_2S_3 • • •, which satisfies that S_1 ∈ {1,2,..., n}, νj ∈ Z and every i ∈ {1,2,..., n} occurs at least once in every v_i consecutive symbols S_j+_1S_(j+2) • • • S_(j+v_i),V_j ∈ Z. If v has a pinwheel schedule then v is called (pinwheel) schedulable. The density of v is defined as d(v) = ∑~n_(i=1) ~1/_(vi) Chan and Chin [4] made a conjecture that every vector v with d(v) ≤ 5/6 is schedulable. In this paper, we examine the conjecture from the point of view of low-dimensional vectors, including 3-, 4- and 5-dimensional ones. We first discover some simple but important properties of schedulable vectors, and then apply these properties to test whether or not a vector is schedulable. As a result, we prove that the maximum density guarantee for low-dimensional vectors is |, which partially support this conjecture.
机译:给定一个n维整数向量v =(v_1,v_2,...,v_n),其中2≤v_1≤v_2≤•••≤v_n,v的风车计划被称为无限符号序列S_1S_2S_3••• ,它满足S_1∈{1,2,...,n},νj∈Z,并且每个i∈{1,2,...,n}在每个v_i个连续符号S_j + _1S_(j +2)•••S_(j + v_i),V_j∈Z。如果v具有风车计划,则称为v(风车)可计划的。 v的密度定义为d(v)= ∑〜n_(i = 1)〜1 / _(vi)Chan和Chin [4]推测每个d(v)≤5/6的向量v为可调度的。在本文中,我们从低维向量(包括3维,4维和5维向量)的角度检查了猜想。我们首先发现可调度向量的一些简单但重要的属性,然后将这些属性应用于测试向量是否可调度。结果,我们证明了低维向量的最大密度保证是|,部分支持了这一推测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号